FMM
Lärare
Kurs-PM
Kursplanering

Loggböcker
Extentor

Schema
Kurslitteratur


Classical Theoretical Physics

TimeEdit Course plan spring 2013


Topic 1: Variational calculus and introduction to analytical mechanics (F1-4, O1-4)
Topic 2: Green's functions (F4-6,O4-6)
Topic 3: Relation between numerical and analytical methods
 
[ÖB] Sparr och Sparr, Övningsbok 
[EX] Delar av "Exempelsamling Fysikens mathematiska metoder, Teoretisk Fysik, KTH" (pdf fil som finns här).
oe2.pdf och oe3.pdf: pdf filer som finns här (oe2) och här (oe3)
[BDP] material som kommer att delas ut i föreläsningen/övningen strax innan O4.
[LL] L.D. Landau and E.M. Lifshitz: Mechanics, Pergamon (1976)
[G] H. Goldstein et.al: Classical Mechanics (Third Edition), Addison Wesley (2002)

Advise on what to read:
L1-L4: [Var]; [BF] Chapter 2; [Tong] 2.1-2.3, 4.1
L5-L6: [Gr]; [BF] Chapter 7-8; [KS] Chapter 5
L7-L12: [Tong] Chapters 2 and 4; I also recommend that you get and study either [LL] (concise) or [G] (longer text).

PART 1


Moment Material Hemtal
Frl1 Variationsräkning  
Ovn1 oe2.pdf: 12, 14, 2, 3  (oe2.pdf: 6, 8)  oe2.pdf: 6, 8
Frl2 Variationsräkning och analytisk mekanik
 
Ovn2 oe2.pdf:   7, 1,4  (oe2.pdf: 9)  oe2.pdf: 13, 11, 9
Frl3 Variationsräkning  
Ovn3 oe2: 5. 10, 11, oe3: 1 (oe3.pdf: 5 [EX]  7.15, 7.14)   oe3.pdf: 3, 5, 9 [EX] 7.15, 7.14
Frl4 Variationsräkning och analytisk mekanik
 
Ovn4 oe3: 2, 4 [EX] 7.8, 7.16
EX 7.7, 7.2
Frl5 Greenfunktioner  
Ovn5 [BDP] 28(a), 29, 30, 31, 32 (33, 34)
Comment: W(y1,y2)= y1(x)y2'(x)- y1'(x)y2(x)
[BDP] 33, 34
[ÖB] 5.10, 5.14, 5.8
Frl6 Greenfunktioner
Numeriska vs analytiska metoder
 
Ovn6 [ÖB] 5.14, 5.15, 5.17, 5.18a, 5.6 (5.13,  5.11)
[ÖB] 5.13, 5.11


PART 2 WORK IN PROGRESS (WE ARE WORKING ON REVISING THE PLAN FOR PART 2)
March 17, 2013


[T] 1.2 = problem 2 on Problem Sheet 1 available on Tong's homepage (etc.)
[G] 2.16: Problem 16 of Chapter 2 in [G] (etc.)

Preliminary program (will be updated during the course)
Updated: Until Ovn 10 (130421)
Some of the Problems from [G] mentioned below are available here.
 
To get the homework problems go to the following link
http://courses.theophys.kth.se/SI1145/Course_Homework_problems/HW_set_1_A_problems.pdf
etc. (change the link according to what problem set you want; e.g. replace "1_A" by "1_B", "2_A" etc.)
(B-problems: do them first; A-problems: need to be done only if you want a mark better than C).

PDF-files with all A and B problems are available here:
http://courses.theophys.kth.se/SI1145/HW_problems_A.pdf
http://courses.theophys.kth.se/SI1145/HW_problems_B.pdf

Moment Material Homework
Frl 7
Elementary principles; Lagrange formalism; conservation laws

Ovn7 [G] 2.18, 2.17 [T] 1.3, 1.6 ([G] 2.13, 2.23) 
1_A and 1_B: [G]1.8(B), 1.9(A), 1.10(A), 1.19(B)
[T] 1.1(A), 1.4(B), 1.7(A)
Frl8 Methods of solution; central force problems

Ovn8 [G] 3.33, 3.19, 3.28   (3.20)
2_A and 2_B: [G] 3.21(B), 3.22(A), 3.23(A), 3.36(A)
[T] 1.2(B), 1.5(B) 
Frl9 Small oscillations; electromagnetic interactions.
 
Ovn9 [G] 6.16, 6.12 (6.6)
3_A and 3_B: [G] 6.13(B), 6.4(B), 6.3(A) [T]2.3(A)
Frl10 Hamilton formalism, Poisson brackets  
Ovn10 [G] 8.13, 8.23, 8.14 (8.19)
4_A and 4_B: [G] 8.1(A), 8.2(A), 8.19(B), 8.16(A)
[T] 4.1(A), 4.2(A), 4.3(B)
Frl11 Canonical transformations; Hamilton-Jacobi theory  
Ovn11 [G] 9.22, 9.23, 9.33, 9.39 (9.28,9.32)
5_A and 5_B: [G] 9.14(A), 9.2(B), 9.28(A),  [T] 4.4(a)(b)(B), 4.6(A)
Frl12 relativistic mechanics; mixed topics   
Ovn12 [G] 10.6, 10.11, 10.15, 10.5 (10.7, 10.28)
6_A and 6_B: [G] 10.5(B), 10.7(A), 10.9(A)




Analytical mechanics

Literature:
[T] = Tong's lecture notes on classical mechanics
[G] = H. Goldstein et.al: Classical Mechanics (Third Edition), Addison Wesley (2002)
Topic 1: Lagrange formulation of classical mechanics
Topic 2: Hamilton mechanics of classical mechanics
Topic 3: How to get from classical to quantum mechanics
Topic 4: Classical field theory




PLAN FROM LAST YEAR (2012):

Analytical mechanics

Literature:
[T] = Tong's lecture notes on classical mechanics
[G] = H. Goldstein et.al: Classical Mechanics (Third Edition), Addison Wesley (2002)
Topic 1: Lagrange formulation of classical mechanics
Topic 2: Hamilton mechanics of classical mechanics
Topic 3: How to get from classical to quantum mechanics
Topic 4: Classical field theory


[T] PS1 P 2= problem 2 on Problem Sheet 1 available on Tong's homepage (etc.)
[G] Ch. 2, P 16: Problem 16 of Chapter 2 in [G] (etc.)

Preliminary program (might be updated during the course)

The Problems from [G] mentioned below are available here.
 
Moment Material Hemtal
Frl 7
Lagrange formalism; conservation laws

Ovn7 [G] Ch. 2, P 16, 17, 18, 23
[T] PS 1,  P 1-4
Frl8 Methods of solution; central force problems

Ovn8 [G] Ch. 3, P 21, 22, 28, 33
[T] PS 1,  P 5-8
Frl9 Oscillations, Hamilton formalism
 
Ovn9 [G] Ch. 6,  P 3, 4, 6, 12
[T] PS 2,  P 1-3
Frl10 Hamilton formalsim, Poisson brackets  
Ovn10 [G] Ch. 8, P 13, 14, 19, 23
[T] PS 4,  P 1-3
Frl11 Canonical transformations; Hamilton-Jacobi theory  
Ovn11 [G] Ch. 9, P 22, 23, 28, 33, 39 
[T] PS 4,  P 4-6
Frl12 Perturbation theory; relativistic mechanics  
Ovn12 [G] Ch. 10, P 6, 7, 11 Ch. 12, problems 4, 8





Senast uppdaterad: Jun 5, 2013