1. Prove the commutation relations

\[[M_{ij}, M_{kl}] = \delta_{jk} M_{il} + \delta_{il} M_{jk} - \delta_{ik} M_{jl} - \delta_{jl} M_{ik}. \]

for the matrices \(M_{ij} = \frac{1}{4} [\gamma_i, \gamma_j] \). (Euclidean metric)

2. Show that the unit sphere in any dimension is a spin manifold. Hint: Think of \(\text{Spin}(n) \) as a \(\mathbb{Z}_2 \) principal bundle over \(\text{SO}(n) \). The transition function of the frame bundle of \(S^n \) defines by pull-back a \(\mathbb{Z}_2 \) bundle over the equator.

3. Compute the 8-form part of the Chern character \(\exp \left(F / 2\pi \right) \) of a real vector bundle in terms of the Pontrjagin classes.

4. Write down explicitly the Dirac operator on the unit sphere \(S^2 \), coupled to the vector potential of the monopole bundle.

5. Let \(D \subset \mathbb{R}^n \) be the unit disk and denote by \(\mathcal{A} \) the set of smooth 1-forms on \(D \) with values in the Lie algebra \(g \) of a compact Lie group \(G \). Let \(p \) be a fixed point on the boundary of \(D \). a) Show that for each \(A \in \mathcal{A} \) there is a unique smooth \(g = g_A : D \to G \) such that \(g_A(p) = 1 \) and \(A' = \text{ad}_{g^{-1}}(A) + g^{-1} dg \) is in the radial gauge, i.e., the radial component \(x_k A_k = 0 \). b) In finite dimensions, if a Lie group \(G \) acts smoothly and freely on a manifold \(M \) then the set of orbits \(M/G \) has a natural differentiable structure making it into a smooth manifold. The same can be shown to be true in the case of \(\mathcal{A}/\mathcal{G} \), where \(\mathcal{G} \) is the group of smooth maps \(f : D \to G \) such that \(f = 1 \) on the boundary of \(D \). Let now \(\Omega G \) be the group of smooth contractible maps \(f \) from \(S^{n-1} = \partial D \) to \(G \) such that \(f(p) = 1 \). Define a map \(\mathcal{A} \to \Omega G \) by \(A \mapsto g_A|_{S^{n-1}} \). Show that this is a homotopy equivalence. Hint: Parametrize the potentials \(A \) as pairs \((A', g_A) \) where \(A' \) is in the radial gauge. The set of potentials in radial gauge is contractible.