1. Consider an Ising chain with nearest-neighbour interactions,

\[H = -J_1 \sum_{i=1}^{N-1} S_i S_{i+1}, \]

where the spins take values +1 and -1. Use mean-field theory to derive a self-consistent equation for the magnetization. Determine the critical temperature \(T_c \) and the critical exponent \(\beta \) (see below for a definition) from this self-consistency equation.

2. A model closely related to the Ising model is the Potts model. Consider the one-dimensional Potts model,

\[H = -J \sum_{i=1}^{N-1} \delta_{S_i S_{i+1}}, \]

where the “spins” \(S_i \) take the values 0 and 1, and \(\delta \) is the Kronecker delta, \(\delta_{ij} = 1 \) if \(i = j \) and \(\delta_{ij} = 0 \) if \(i \neq j \). Calculate the partition function \(Z \) exactly, and determine the thermal expectation value of the Hamiltonian, \(\langle H \rangle = \text{Tr}(H e^{-\beta H})/Z \), in the limit of a very long chain. You can use either open or periodic boundary conditions in your calculations.

3. The Landau free energy that describes the tricritical point is of the form

\[G(T, m) = \frac{1}{2} b m^2 + \frac{1}{6} f m^6 - mh, \]

with \(b = b_0 (T - T_c) \) and \(f, b_0 > 0 \). The variable \(h \) denotes a magnetic field. Determine the critical exponents \(\alpha, \beta, \gamma \) and \(\delta \). Check if Rushbrooke’s law, \(\alpha + 2\beta + \gamma = 2 \), holds.

4. Consider a system with only one relevant variable, which we take to be the reduced temperature \(t = (T - T_c)/T_c \). Use arguments from renormalization group theory to motivate the scaling form of the free energy,

\[g(t) \sim t^{-d} g(t^*). \]
Show how the exponent y_h can be determined in terms of the the recursion relation for the temperature, $T' = R(T)$, close to the fixed point. Use the more general scaling form

$$g(t, h) \sim t^{-d} g(t^{y_t}, t^{y_h} h)$$

to determine the critical exponent γ in terms of the exponents y_t and y_h.

5. Experiments are performed to measure the susceptibility of a material that is well described by a one-dimensional Ising model,

$$H = -J \sum_{i=1}^{N-1} S_i S_{i+1} - h \sum_{i=1}^{N} S_i,$$

In the experiment magnetic ions are randomly substituted by non-magnetic ions. In the Ising model this corresponds to removing spins with a probability $1 - p$. The measurements are performed at very low temperatures $T << J$. A set of samples with varying dilution strength p is prepared, and the susceptibility is measured as p approaches the percolation limit, p_c. The experiments are found to be well described by the following relation,

$$\chi \sim (p - p_c)^{-\gamma}.$$

Your job as a theorist is to calculate the exponent γ. Show all the steps of your calculation.

Definitions of the critical exponents:

$$c(t, h = 0) = -T\frac{\partial f}{\partial T^{2}} \sim |t|^{-\alpha}$$

$$m(t, h = 0) = \frac{\partial f}{\partial h}\bigg|_{h=0} \sim (-t)^{\beta}$$

$$\chi(t, h = 0) = \frac{\partial m}{\partial h} \sim |t|^{-\gamma}$$

$$m(t = 0, h) \sim |h|^{\frac{1}{c}}$$

LYCKA TILL! / GOOD LUCK!
TENTAMEN I STATISTISTISK MEKANIK

Statistisk mekanik 5A1350 för F3
Onsdag 2004-05-26, kl. 08.00-13.00

SOLUTIONS

1. Assume that spin S_i sees the average magnetization of the other spins, $S_j \rightarrow \langle S_j \rangle = m$. The mean-field Hamiltonian can then be written as

$$H^{MF} = -J_1 \sum_i S_i \sum_m m.$$

On a chain there are two nearest neighbours (nn), and therefore

$$H^{MF} = -2m J_1 \sum_i S_i.$$

This is a non-interacting Hamiltonian, and we can consider the mean-field Hamiltonian for a single spin,

$$H_i^{MF} = -2m J_1 S_i.$$

The self-consistency equation for the magnetization is

$$m = \frac{\sum_{S_i=\pm 1} S_i e^{-\beta H_i^{MF}}}{\sum_{S_i=\pm 1} S_i e^{-\beta H_i^{MF}}} = \tanh[2J_1\beta m].$$

![Graph of tanh function](image)

The critical temperature is determined by the derivative of m and $\tanh[2J_1\beta m]$ being equal at the origin,

$$\frac{d}{dm} (m = \tanh[2J_1\beta m]) \big|_{m=0},$$

3
which leads to the equation $1 = 2J_1 \beta_c$, and finally $1/\beta_c = k_b T_c = 2J_1$.

In order to determine the critical exponent β we Taylor expand the self-consistency equation for small values of m,

$$m = \tanh[2J_1 \beta m] = \tanh\left[\frac{T_c}{T} m\right] \approx \frac{T_c}{T} m - \frac{1}{3} \frac{T_c^3}{T} m^3.$$

Solving for m we obtain $m^2 = 3 \frac{T_c^2}{T} \frac{T_c - T}{T_c}$, and close to T_c we see that $m \sim (T_c - T)^{\frac{1}{2}}$, and therefore $\beta = \frac{1}{2}$.

2. Consider open boundary conditions,

$$Z_n = \sum_{S_1, \ldots, S_N} e^{\beta J \sum_{i=1}^{N-1} \delta S_i S_{i+1}}$$

$$= \sum_{S_1, \ldots, S_{N-1}} e^{\beta J \sum_{i=1}^{N-2} \delta S_i S_{i+1}} \sum_{S_N} e^{\beta J \delta S_N S_{N-1} S_N}$$

$$= \sum_{S_1, \ldots, S_{N-1}} e^{\beta J \sum_{i=1}^{N-2} \delta S_i S_{i+1} (1 + e^{\beta J})}$$

$$= \sum_{S_1, S_2} e^{\beta J \delta S_1 S_2} (1 + e^{\beta J})^{N-2}$$

$$= 2(1 + e^{\beta J})^{N-1}$$

We have

$$\langle H \rangle = \frac{\text{Tr}(He^{-\beta H})}{\text{Tr}e^{-\beta H}} = -\frac{\partial \ln Z}{\partial \beta},$$

and since $\ln Z = \ln 2 + (N - 1) \ln(1 + e^{\beta J})$ we get $\lim_{N \to \infty} \ln Z = N \ln(1 + e^{\beta J})$.

Therefore

$$\langle H \rangle = -\frac{\partial N \ln(1 + e^{\beta J})}{\partial \beta} = -N \frac{Je^{\beta J}}{1 + e^{\beta J}} = \frac{-NJ}{1 + e^{\beta J}}$$

We can check that $\lim_{\beta \to \infty} \langle H \rangle = -NJ$, which corresponds to all spins in the same state (0 or 1).

3. The magnetization \tilde{m} is given by

$$\frac{\partial G}{\partial \tilde{m}} = 0 = b \tilde{m} + f \tilde{m}^5 - h = 0$$

Set $h = 0$ and we get

$$\tilde{m} = \left(\frac{-b}{f}\right)^{\frac{1}{4}} = \left(\frac{-b_0 (T - T_c)}{f}\right)^{\frac{1}{4}}$$

and $\tilde{m} \sim (T_c - T)^{\frac{1}{4}}$ (for $T < T_c$) with $\beta = \frac{1}{4}$.
Determine the susceptibility \(\chi = \frac{\partial m}{\partial h} \)

\[
\frac{\partial}{\partial h}(b\tilde{m} + f\tilde{m}^5 - h) = b\chi + 5f\tilde{m}^4\chi - 1 = 0
\]

and

\[
\chi = \frac{1}{b + 5f\tilde{m}^4}
\]

Considering \(T > T_c \) we get \(\chi = 1/b = 1/b_0(T - T_c)^{-1} \) and \(\chi \sim (T - T_c)^{-\gamma} \) with \(\gamma = 1 \).

The equation of state at \(T = T_c \) is given by \(f\tilde{m}^5 - h = 0 \) and it follows that

\[
\tilde{m} = \left(\frac{h}{f}\right)^\frac{1}{5}.
\]

Therefore \(\tilde{m}(T = T_c) \sim h^\frac{1}{5} \), with \(\delta = 5 \).

Finally the specific heat \(C = T\frac{\partial^2 G}{\partial T^2} \). As \(T \to T_c^- \) we get

\[
G = \frac{1}{2}b_0(T - T_c)\frac{b_0^5(T_c - T)^\frac{1}{5}}{f^\frac{5}{6}} + \frac{1}{6}b_0^5(T_c - T)\frac{b_0^\frac{5}{6}}{f^\frac{5}{6}} \propto (T_c - T)^\frac{5}{6}
\]

and therefore \(C = T\frac{\partial^2 G}{\partial T^2} \propto T(T_c - T)^{-\frac{1}{5}} \) and \(C \propto (T_c - T)^{-\alpha} \), with \(\alpha = \frac{1}{2} \).

We have \(\alpha + 2\beta + \gamma = \frac{1}{5} + 2\frac{1}{5} + 1 = 2 \) and Rushbrooke’s law holds.

4. Assuming that the transformed Hamiltonian has the same functional form as the original Hamiltonian it follows that the free energy \(G \) will also be of the same form. Consider the transformation of the free energy per spin, \(N g(t) = N' g(t') \). If the factor of rescaling is \(l \), then the number of spins transforms as \(N' = l^{-d} N \). The temperature \(T \) transforms as \(T' = R(T) \). Linearizing close to the fixed point \(T_c \) we get

\[
T' = R_l(T) = R_l(T_c + \delta T) = T_c + \frac{\partial R_l}{\partial T}|_{T=T_c}\delta T,
\]

and \(\delta T' = \frac{\partial R_l}{\partial T}|_{T=T_c}\delta T \), and so \(t' = \frac{\partial R_l}{\partial T}|_{T=T_c} t = \lambda_l t \). Rescaling twice with length scale \(l \) should yield the same result as rescaling once with length scale \(l^2 \), and therefore \(\lambda_l = \lambda_l \lambda_l \), leading to \(\lambda_l = t^{y_l} \). Putting it all together we get

\[
g(t) = l^{-d}g(t^{y_l}),
\]

with

\[
y_l = \frac{\ln(\frac{\partial R_l}{\partial T}|_{T=T_c})}{\ln l}.
\]

To calculate \(\gamma \) we use \(\chi(t, h = 0) = \frac{\partial m}{\partial h} \sim |t|^{-\gamma} \). First we determine the magnetization

\[
\frac{\partial}{\partial h}(g(t, h) = l^{-d}g(l^{y_h}t, l^{y_h}h))
\]

\[
m(t, h) = l^{-d+y_h}m(l^{y_h}t, l^{y_h}h).
\]
From here we calculate the susceptibility,

\[
\frac{\partial}{\partial h}(m(t, h)) = t^{-d-2y_h}m(p^n t, l^n h) \quad \chi(t, h) = t^{-d-2y_h} \chi(p^n t, l^n h).
\]

Choosing \(h = 0 \) and \(l = |t|^{-\frac{1}{y_t}} \) we get

\[
\chi(t, h) = t^{-\frac{2y_h - d}{y_t}} \chi(\pm 1, 0) \sim t^{-\gamma},
\]

and \(\gamma = \frac{2y_h - d}{y_t} \).

5. All spins within each cluster will be aligned. Consider a cluster of size \(s \). The magnetization is

\[
M_{\text{cluster}} = s \left(\frac{e^{\frac{sh}{kT}} - e^{-\frac{sh}{kT}}}{e^{\frac{sh}{kT}} + e^{-\frac{sh}{kT}}} \right) = s \tanh\left(\frac{sh}{kT} \right),
\]

and the magnetization per spin is (below the percolation threshold \(p_c = 1 \))

\[
m = \sum_{s=1}^{\infty} s n_s \tanh\left(\frac{sh}{kT} \right).
\]

The susceptibility is given by \((\tanh(x) \sim x \text{ for small } x) \)

\[
\chi = \sum_{s=1}^{\infty} s^2 n_s \frac{d}{kT}.
\]

For the one-dimensional percolation problem the normalized cluster number \(n_s = p^n(1-p)^2 \), and

\[
kT\chi = (1-p)^2 \sum_{s=1}^{\infty} s^2 p^n
\]

\[
= (1-p)^2 \left(p \frac{d}{dp} \right)^2 \sum_{s=1}^{\infty} p^n
\]

\[
= (1-p)^2 \left(p \frac{d}{dp} \right)^2 \frac{p}{1-p}
\]

\[
= (1-p)^2 \frac{p(1+p)}{(1-p)^3}
\]

\[
= p(1+p)
\]

The percolation threshold is \(p_c = 1 \) and

\[
\chi \propto (p_c - p)^{-\gamma},
\]

with \(\gamma = 1 \).