1. Derive an equation that expresses the mean square fluctuations in energy in a canonical ensemble as a function of heat capacity, temperature and system size! Show how the relative energy fluctuations depend on the system size! What will happen for a very large system?

2. In a Landau theory, the coefficient for the fourth order term happens to be zero which gives the free energy
\[f(T, m) = \frac{a}{2}(T - T_c)m^2 + \frac{b}{6}m^6, \]
with \(a \) and \(b \) being positive constants. Show that there is a phase transition, determine its order, the magnetisation in the different phases and the exponent \(\beta \)!

3. Start from the scaling relation for the singular part of the free energy:
\[f_s(t, h) \propto L^{-d}f_s(L^{y_t}t, L^{y_h}h) \]
were \(t = (T - T_c)/T_c \) and show that \(m(t, h) \) can be written as \(|t|^\beta m(\pm 1, h|t|^{-\Delta}) \)! Determine the exponents \(\beta \) and \(\Delta \) in terms of \(y_t \) and \(y_h \) and the dimensionality, \(d \)!

4. A one-dimensional hard-core gas consists of \(N \) particles with the linear size \(a \) that are confined to a line of length \(L \). Determine the one-dimensional pressure \(-\partial F/\partial L \) as a function of \(k_BT, N, L \) and \(a \)! Taylor expand the equation of state and obtain all virial coefficients! When doing the last part, you may assume that \(N \gg 1 \).

5. For a one-dimensional Ising model with nearest neighbour interactions and no external field, the Hamiltonian is
\[H = -J \sum_{i=1}^{N-1} S_i S_{i+1}, \]
with \(S_i = \pm 1 \). Determine the two-spin correlation function \(g_{ij} = \langle S_i S_j \rangle \) as a function of \(J/k_BT \) and \(|i - j| \)!

GOOD LUCK!

turn
Definition of some critical exponents:

\[c(t, h = 0) = -T \frac{\partial^2 f}{\partial T^2} \propto |t|^{-\alpha} \]
\[m(t, h = 0) = -\frac{\partial f}{\partial h} \propto (t)^\beta \]
\[\chi(t, h = 0) = \frac{\partial m}{\partial h} \propto |t|^{-\gamma} \]
\[\xi(t, h = 0) \propto |t|^{-\nu} \]

SUGGESTED SOLUTIONS

Solution, problem 1:
The average energy is obtained as

\[\langle E \rangle = \frac{\sum_i E_i e^{-E_i / k_B T}}{\sum_i e^{-E_i / k_B T}}, \]

with the sum going over all states of the \(N \)-particle system. The heat capacity at constant volume is obtained as the derivative of the average energy with respect to \(T \)

\[C_V = \frac{\partial \langle E \rangle}{\partial T} = \frac{1}{k_B T^2} \left[\frac{\sum_i E_i^2 e^{-E_i / k_B T}}{\sum_i e^{-E_i / k_B T}} - \left(\frac{\sum_i E_i e^{-E_i / k_B T}}{\sum_i e^{-E_i / k_B T}} \right)^2 \right] = \]

\[= \frac{1}{k_B T^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right) = \frac{\sigma_E^2}{k_B T^2}. \]

Thus the relative fluctuations in energy are

\[\frac{\sigma_E}{\langle E \rangle} = \sqrt{\frac{k_B T^2 C_V}{\langle E \rangle}} = \sqrt{\frac{k_B T^2 c_V}{\langle e \rangle}} \frac{1}{\sqrt{N}}, \]

with \(c_V = C_V / N \) being the heat capacity per particle (atom) and \(\langle e \rangle = \langle E / N \rangle \) being the average energy per particle (atom). Thus the relative energy fluctuations will go to zero when system size goes to infinity.

Solution, problem 2:
The free energy is a sixth:es degree polynomial in the magnetisation. The sign of the second degree term will be negative for \(T < T_c \) and positive for \(T > T_c \). The maxima and minima are obtained from

\[\frac{\partial f}{\partial m} = m[a(T - T_c) + bm^4] = 0. \]

For \(T > T_c \) this equation has one single real solution, \(m = 0 \), giving a minimum in the free energy corresponding to a state without spontaneous magnetisation. For \(T < T_c \), \(m = 0 \) will be a maximum an there are in addition two symmetric minima at \(m = \pm (a/b)^{1/4}(T_c - T)^{1/4} \). These minima correspond to spontaneous magnetisation. When \(T \) approaches \(T_c \) from below, the magnetisation goes continuously to zero an we have thus a second order phase transition.
at $T = T_c$. The exponent β by which $m(t)$ approaches zero is thus $1/4$.

Solution, problem 3:

With

$$f(t, h) = L^{-d} f(tL^y, hL^y),$$

The magnetisation is then obtained as

$$m(t, h) = \frac{\partial f(t, h)}{\partial h} = L^{yn-d} m(tL^y, hL^y).$$

Now we may chose the scaling factor L in different ways. The choice $|t|^{-1/y}$ gives the desired result

$$m(t, h) = |t|^{(d-yh)/yt} m(\pm 1, h|t|^{-yh/yt}),$$

from which the exponents could be identified as $\beta = (d - yh)/yt$ and $\Delta = yh/yt$.

Solution, problem 4:

The configurational part of the partition function is:

$$Q(N, L, a) = \int_{L-Na}^{L-Na} dx_1 \int_{x_1 + a}^{L-(N-1)a} dx_2 \ldots \int_{x_{N-2} + a}^{L-a} dx_{N-1} \int_{x_{N-2} + a}^{L} dx_N$$

The integrals can be performed successively starting from the end with the one over x_N. This gives

$$Q(N, L, a) = \frac{1}{N!} (L - Na)^N$$

Thus, we have

$$F(N, L, a, T) = -k_BT \ln Q = k_BT [N \ln (L - Na) - \ln N!],$$

which gives the one dimensional pressure as

$$p = -\frac{\partial F}{\partial L} = \frac{Nk_BT}{L-Na} = \frac{Nk_BT}{L} \frac{1}{1 - \frac{N}{L}a}.$$

The virial expansion is an expansion in N/L, and is the geometric series

$$p = \frac{Nk_BT}{L} \left[1 + \frac{N}{L} a + \left(\frac{N}{L} \right)^2 a^2 + \ldots \right].$$

Solution, problem 5:

We want to calculate

$$g_{ij} = \langle S_i S_j \rangle = \frac{1}{Z} \sum_{S_1 = \pm 1, \ldots, S_N = \pm 1} S_i S_j e^{\frac{J}{k_BT} \sum_{k=1}^{N-1} S_k S_{k+1}},$$

with the partition function Z being

$$Z = \sum_{S_1 = \pm 1, \ldots, S_N = \pm 1} e^{\frac{J}{k_BT} \sum_{k=1}^{N-1} S_k S_{k+1}} = 2^N \left[\cosh \left(\frac{J}{k_BT} \right) \right]^{N-1}.$$
This can be slightly generalised by letting the coupling constant be a function of position, \(k \), giving

\[
Z(J_1, \ldots J_{N-1}) = \sum_{S_1 = \pm 1, \ldots, S_N = \pm 1} \frac{1}{e^{k_B T}} \sum_{k=1}^{N-1} J_k S_k S_{k+1} = 2^N \prod_{k=1}^{N-1} \cosh \left(\frac{J_k}{k_B T} \right).
\]

Since the average is symmetric in \(i \) and \(j \) we could choose the order in which way we like, e.g., with \(j > i \). Since \(S_k^2 = 1 \) we may then write

\[
S_i S_j = S_i S_{i+1} S_{i+1} S_{i+2} S_{i+2} \ldots S_{j-1} S_{j-1} S_j.
\]

We note now, that if we take the derivative of the partition function with respect to \(J_k \) we will get out a factor \(S_k S_{k+1}/k_B T \). Thus, the desired average could be written as a logarithmic derivative of the generalised partition function

\[
\langle S_i S_j \rangle = (k_B T)^{j-i} \frac{\partial^{j-i} \ln (Z(J_1, \ldots J_{N-1}))}{\partial J_i \ldots \partial J_{j-1}},
\]

which easily is calculated from the partition function above. After this all the \(J_k \)'s can be put equal again and the final result may be written as

\[
g_{ij} = \langle S_i S_j \rangle = \left[\tanh \left(\frac{J}{k_B T} \right) \right]^{i-j}.
\]

It might be worthwhile to check a few special cases. For \(i = j \) the correlation function is 1 as it should be. For large temperatures, the correlation function will go to zero, for low temperatures it will go to one. At any finite temperature \(0 < \tanh \left(\frac{J}{k_B T} \right) < 1 \) and the correlation function will thus be a continuously decaying function of \(|i - j| \).