Credits: 5

**Coordinator and actual examiner:**Dr. Thomas Konstandin, Postdoc**Formal examiner:**Dr. Tommy Ohlsson, Professor

Wed, November 1, 2006 15:15 |
Lecture I: Introduction. Canonical ensembles in statistical physics. Path integral formulation of quantum mechanics. |

Wed, November 8, 2006 15:30 |
Lecture II: Imaginary time formalism of bosonic systems. |

Fr, November 10, 2006 11:00 |
Supplement I: Regulariziation and renormalization in QFT. |

Wed, November 15, 2006 15:30 |
Lecture III: Real time formalism of bosonic systems. |

Wed, November 22, 2006 15:30 |
Lecture IV: Fermionic systems in TFT. |

Wed, November 29, 2006 15:30 |
Lecture V: Quantization of gauge fields in QFT and TFT. |

Wed, December 6, 2006 15:30 |
Lecture VI: Seminar [1]. Seminar [3]. |

Fr, December 15, 2006 10:00 |
Lecture VII: Spontaneous symmetry breaking at finite temperature. Seminar [5]. |

Wed, January 17, 2007 15:30 |
Supplement II: Non-abelian gauge fields. |

Wed, January 31, 2007 15:30 |
Lecture VIII: Seminar [8]. |

Wed, February 28, 2007 15:30 |
Lecture IX: Seminar [2]. Quantum Boltzmann equations from the real time formalism. |

Wed, March 28, 2007 15:30 |
Discussion of the problem set. |

[1] D. Notzold and G. Raffelt, ``Neutrino Dispersion at Finite Temperature and Density,'' Nucl. Phys. B 307, (1988) 924.

[2] H. A. Weldon, ``Dynamical Holes in the Quark - Gluon Plasma,'' Phys. Rev. D 40 (1989) 2410.

[3] S. R. Coleman, ``The Fate Of The False Vacuum. 1. Semiclassical Theory,'' Phys. Rev. D 15 (1977) 2929.

[4] A. D. Linde, ``Fate Of The False Vacuum At Finite Temperature: Theory And Applications,'' Phys. Lett. B 100 (1981) 37.

[5] A. D. Linde, ``A New Inflationary Universe Scenario: A Possible Solution Of The Horizon, Flatness, Homogeneity, Isotropy And Primordial Monopole Problems,'' Phys. Lett. B 108 (1982) 389.

[6] G. W. Anderson and L. J. Hall, ``The Electroweak Phase Transition And Baryogenesis,'' Phys. Rev. D 45 (1992) 2685.

[7] L. Dolan and R. Jackiw, ``Symmetry Behavior At Finite Temperature,'' Phys. Rev. D 9, 3320 (1974).

[8] G.F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia, ``Towards a complete theory of thermal leptogenesis in the SM and MSSM,'' Nucl. Phys.B 685:89-149 (2004).

- M. Le Bellac,
*Thermal field theory*, Cambridge University Press, 1996 - J. I. Kapusta,
*Finite-temperature field theory*, Cambridge University Press, 1989

- Introduction. General concepts of statistical physics and quantum field theory.
- Quantization of the bosonic field at finite temperature; Matsubara frequencies; Feynman rules at finite temperature
- Quantization of the fermionic field at finite temperature; fermionic path integrals and coherent state formalism
- Quantization of the gauge fields at finite temperature; ghosts and blackbody radiation; static screening
- Renormalization and infrared problems
- Collective excitations in a plasma
- Equivalence of real-time and imaginary-time formalism

- Linear response theory
- Resummation and effective actions; Daisy diagrams
- Hard thermal loop expansion
- Dynamical screening

- Spontaneous symmetry breaking and restoration
- Phase transitions and inflation
- Transport equations and baryogenesis; Kadanoff-Baym equations in Wigner space

Senast uppdaterad: 2008-11-28

Sidansvarig: